Hamiltonian completions of sparse random graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hamiltonian completions of sparse random graphs

Given a (directed or undirected) graph G, finding the smallest number of additional edges which make the graph Hamiltonian is called the Hamiltonian Completion Problem (HCP). We consider this problem in the context of sparse random graphs G(n, c/n) on n nodes, where each edge is selected independently with probability c/n. We give a complete asymptotic answer to this problem when c < 1, by cons...

متن کامل

Sparse pseudo-random graphs are Hamiltonian

In this article we study Hamilton cycles in sparse pseudorandom graphs. We prove that if the second largest absolute value of an eigenvalue of a d-regular graph G on n vertices satisfies

متن کامل

Hamiltonian Cycles in Sparse Graphs

Hamiltonian Cycles in Sparse Graphs Alexander Hertel Master of Science Graduate Department of Computer Science University of Toronto 2004 The subject of this thesis is the Hamiltonian Cycle problem, which is of interest in many areas including graph theory, algorithm design, and computational complexity. Named after the famous Irish mathematician Sir William Rowan Hamilton, a Hamiltonian Cycle ...

متن کامل

Sparse Kneser graphs are Hamiltonian

For integers k ≥ 1 and n ≥ 2k + 1, the Kneser graph K(n, k) is the graph whose vertices are the k-element subsets of {1, . . . , n} and whose edges connect pairs of subsets that are disjoint. The Kneser graphs of the form K(2k + 1, k) are also known as the odd graphs. We settle an old problem due to Meredith, Lloyd, and Biggs from the 1970s, proving that for every k ≥ 3, the odd graph K(2k + 1,...

متن کامل

Bisecting sparse random graphs

Consider partitions of the vertex set of a graph G into two sets with sizes differing by at most 1: the bisection width of G is the minimum over all such partitions of the number of ‘‘cross edges’’ between the parts. We are interested in sparse random graphs Ž . G with edge probability c n. We show that, if c ln 4, then the bisection width is n n, c n with high probability; while if c ln 4, the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 2005

ISSN: 0166-218X

DOI: 10.1016/j.dam.2005.05.001